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By employing a nonholonomic description of the governing equations, the 
complex lamellar motion and Beltrami motion of steady-rotating, viscous, incom- 
pressible, perfectly conducting two-phase fluid flows in the presence of a magnetic 
field are discussed and some results of physical importance are derived. 

1. I N T R O D U C T I O N  

Multiphase fluid phenomena  are of  extreme importance in various 
fields of science and technology, such as geophysics, nuclear engineering, 
and chemical engineering. In recent years, considerable attention has been 
given to the study of the multiphase fluid flow system in a nonrotating or 
rotating frame of reference. The multiphase fluid systems are concerned 
with the motion of a liquid or gas containing immiscible inert particles. Of  
all multiphase fluid systems observed in nature, blood flow, flow in rocket 
tubes, dust in gas cooling systems to enhance the heat transfer movement  
of  inert particles in atmospheres,  and sand or other suspended particles in 
seawater are the most common examples ofmult iphase  fluid systems. Studies 
of  these systems are mathematically interesting and physically useful. The 
presence of particles in a homogeneous fluid makes the dynamical study 
of the flow problem quite complicated. However, these problems are usually 
investigated under various simplifying assumptions. 

Saffman (1962) formulated the equations of motion of a dusty fluid 
which is represented in terms of a large number  density N(x, t) of very 
small, spherical, inert particles whose volume concentration is small enough 
to be neglected. It is assumed that the density of  the dust particles is large 
compared with the fluid density so that the mass concentration of  the 
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particles is an appreciable fraction of unity. In this formulation, Saffman 
also assumed that the treatment of individual particles and the fluid remains 
valid. 

Using the model of Saffman, several authors (e.g., Michael and Miller, 
1966; Michael, 1968; Liu, 1967; Healy and Yang, 1972; Singh et  al. 1984) 
have investigated various aspects of hydrodynamic and hydromagnetic 
two-phase fluid flows in a nonrotating system. On the other hand, the 
simultaneous influence of rotation and external magnetic field on electrically 
conducting two-phase fluid flow systems seems to be dynamically important 
and physically useful. In spite of the above work, the dynamics of the 
two-phase conducting fluid flow in a rotating system has hardly received 
any attention. 

The intrinsic description of a three-dimensional vector field in terms 
of nonholonomic coordinates was first introduced by Vranceanu (1936) and 
was employed by Marris and Passman (1969) to describe some kinematic 
properties of fluid flows. This geometry was applied by Rogers and Kingston 
(1974), Singh and Babu (1983), Singh and Singh (1984), and Singh et  al. 

(1984) in the study of MFD flows. 
The main objective of this paper is the study of the geometry of 

two-phase fluid flow in a rotating coordinate system. We have decomposed 
the governing equations along the vortex line triad. The complex lamellar 
motion and Beltrami motion are studied and the conditions are obtained 
for which the vortex lines are straight lines normal to Maxwellian surface 
which are minimal surface. The variation of total energy along the vortex 
lines is also discussed. 

2. BASIC EQUATIONS 

The basic equations governing the steady motion of an incompressible, 
viscous, two-phase fluid flow with infinite electrical conductivity in a rotating 
coordinate system under an external magnetic field are given by 

div u = 0 (1) 

p[(u �9 grad)u+2to x u] = -g r ad  p* + ~ V2u+/~ curl H x H +  KN(v-u )  (2) 

curl(u x H) = 0 (3) 

div(Nv) = 0 (4) 

m[(v- V)v+ 2~o xv] = K(u-v )  (5) 

div H = 0 (6) 

where u, v, H, P*, p and ~/ are, respectively, the fluid velocity vector, the 
dust velocity vector, the magnetic field vector, the modified fluid pressure, 
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the fluid density, and the kinematic  coefficient of  viscosity; m is the mass 
o f  each dust particle, N is the number  density o f  dust particles, and K is 
the Stokes resistance coefficient for the dust particles. 

The situation for  which the velocities o f  fluid and dust particles are 
everywhere parallel is defined as 

O/ 
v = ~ u  (7) 

where c~ is some scalar satisfying 

u" grad a = 0  (8) 

which implies that a is constant  on the fluid streamlines. Using the vector  
identities, 

(v- grad)v = 1 grad(v �9 v) - v x curl v 

curl curl v = grad div v -  V2v 

along with the substitution curl v = ~ in the m o m e n t u m  equat ion (2), we get 

V B = p { u x ( 2 t o + ~ ) } + i z H . g r a d H - ~ c u r l ~ + K ( a / N - 1 ) u  (9) 

which is the Bernoulli  equat ion;  here B = �89 pu2+ P*+ �89 u is the magni-  
tude o f  the velocity, and H is the magnet ic  field strength. 

3. N O N H O L O N O M I C  G E O M E T R I C  R E S U L T S  

Let us introduce the or thonormal  basis s, n, b along the vertex lines, 
where s is the unit  tangent;  n is the unit principal  normal ;  and b is the unit  
binormal.  N o w  we state some geometric results due to Rogers and Kingston 
(1974) in terms of  eight parameters  k, % I'Z,, f~,, d ivn,  d ivb ,  0ns = 
n �9 grad s �9 n, and Obs = b �9 grad s �9 b: 

3s 
- k n  (10) 

~s 

6n 
- - =  - k s +  ~-b ( l l )  
8s 

t~b 
- -  = - ~ n  ( 1 2 )  
t~s 

6s 
-- 0.sn-- ( T + a .  - f~ s )b  (13) 

6n 

~n 
- - =  0nss-  div bb (14) 
6n 



1428 Thakur and Mishra 

6b 
- - =  ( z +  f i ,  - f i s ) s+  div bn (15) 
n o  

~S 
- - =  - 0 "  + fi,,)n + Ob~b (16) 
~b 

t~n 
= (r  + f i . ) s  + ( k +  div n)b (17) 

3b 
3b ObsS-(k+divn)n (18) 

where 3 /3s  = s -V is the intrinsic derivative along s lines, k is the curvature,  
and ~- is the torsion o f  the s lines. Ils = s �9 curl s and I~, = n �9 curl n are the 
abnormalit ies o f  s lines and n lines, respectively. The relations (10)-(12) 
are the Serret -Frenent  formulas.  

It should be noted that  here we employ the parameter  12n instead o f  
O = f i b - - f i ~  as employed  by Marris and Passman (1969), and fib is the 
abnormali ty  o f  b lines expressed in terms of  the other parameters by the 
relation 

~~b = - -22+ fis + f i n  

The further results due to Marris and Passman are 

curl s = f i s s +  kb 

curl n = - div bs + ~ .  n + 0ns b 

curl b = (k + div n)s - 0n~ n + fi  b b 

div s = O,,s + Obs 

(19) 

(20) 

(21) 

(22) 

(23) 

4. THE G E O M E T R Y  OF VORTEX LINES 

The vectors 6, u, H,  to can be expressed as 

6= ~s 

u = uss+  unn+ Ubb 

2 to=  w~s+ wnn+ Wbb 

H = hss+ h~n+ hbb 

(24) 

(25) 

(26) 

(27) 

where ~: is the magni tude  of  vorticity, us, un and ub are the velocity 
components ;  to~, wn and rob are the angular  velocity components ;  and h~, 
hn and hb are the magnet ic  field vector components  in the directions s, n 
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and b, respectively. Operating with curl on (25) and using equations (20)- 
(22) and (24), we obtain 

rub gun 
~: = + usl)s - u. div b+  ub(k + div n) (28) 

fn 8b 

fUs rUb 
Jr unf~. - UbObs = 0 (29) 

fb fis 

fun fUs 
+ ku. + O.su. + f l b b l b  = 0 (30) fS 8n 

These are the geometric conditions satisfied by the geometric parameters 
of vortex-line triad and are independent of the nature of the fluid. 

Using the solenoidal property of the vorticity vector, we get 

f 
- -  In ~+ div s = 0 (31) 
fs  

Thus, by (31) and (23) we conclude the following theorem. 

Theorem I. In steady, rotating, two-phase magnetofluid flows, the 
magnitude of vorticity remains constant along vortex lines if and only if 
the deformations of vortex lines along their principal normal and binormal 
vanish. The converse is also true. 

Using equations (24)-(27) and the geometric results of the preceding 
section in equation of motion (9), field equation (3), and in (5), we get the 
decompositions 

fB f h fhs+ fh, 
fs - lX [ "-~s h.~nn + hb--~-~- h.hnk 

+ h.hb(2r + 2 0 .  - f L )  - h2.0.. - h2bObs] 

+p(U.Wb-UbW.)-~I(I2,+KN(N-1)U~ (32) 

fB [h, fh"+h fh.+ fh. 
~-b=/Z L fs " gin h b ~ +  hnh b div b 

+ h.hsO., - hbhs(2r + f~.) + h2k] 

8~ h2(k+divn)+p~u b -rl- ~ -  

+ p(ubws- UsWb)+ K N ( N - 1 ) u n  (33) 
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where 

8B [ 8h b h .  t~h b t~h b 
~=/'*[h~-~-s+ 6n +hb~-~+hbh,Ob~ 

+ hbh.(k+div n) - h.h~(fl. - ~ s )  

t~A b 6 A .  

6n 8b 
4- A~f~s- A.  div b+ Ab(k +divn)=0 

6 A ,  t~A b 

6b 6s 
~- A~fl. - AbObs = 0 

8A, 8As 
t~s ~n 

t" Ab['~ b § A,k + A.O.~ = 0 

(34) 

(35) 

(36) 

(37) 

A ,  = Unhb -- Ubhn, A .  = Ubh s -- Ushb, A b = u ,h .  - u .h ,  

Ol 2 

§ O n s - ~ - N )  Obs § 

+(N)2U,  u,O.~+(N)eU.Ub div b+ (NUs)2k 

(~ a K - N  +-~(U,Wb--UbWs)=-~ 1 u. 

(38) 

(39) 
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2 ,~{ub'~ ,~2 , ~ / u b \  a ~ , ~ /ub \  

+ u s u , , ( a s - a , , ) +  -~ u ~ u b ( k + d i v b )  

+~(~~176 1 -  ~,~ (4o) 

5. COMPLEX LAMELLAR MOTION 

The motion is complex lamellar if the velocity u is such that (Marris 
and Passman, 1969) 

u . c u r l u = 0 ,  i.e., u . ~ = 0  (41) 

The condition (41) implies that us = 0. Let us assume that the magnetic field 
lines are in the normal planes of  the vortex lines, i.e., hs ,= O. Then equations 
(35)-(37) are reduced to the form 

f~sAs =0  (42) 

6 A s / 6 b = O  (43) 

6 ln A J 6 n  = k (44) 

If the streamlines and the magnetic field lines are nonparallel, As # 0, and 
hence, from equation (42), we have 

f~s=O (45) 

which ensures the existence of a family of surfaces orthogonal to the vortex 
lines. These surfaces contain the streamlines and the magnetic field lines, 
and hence they are Maxwellian surfaces, - d i v  s is the mean curvature of 
such surfaces. Therefore, from the above discussion and equation (31), we 
conclude the following theorem. 

Theorem 2. For the complex lamellar motion of two-phase magneto- 
fluid flow in a rotating coordinate system, where the magnetic lines are in 
the normal plane of the vortex lines, (i) the vortex lines are orthogonal to 
the Maxwellian surface, and (ii) the magnitude of the vorticity is uniform 
along vortex lines if and only if the Maxwellian surfaces are minimal 
surfaces. 
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Suryanarayan (1972) has shown that Hu sin a* is constant on the 
Maxwellian surfaces, where a* is the angle between the streamlines and 
the magnetic field lines. But Hu sin a * = l u x H I ,  which is equal to As. 
Therefore, As is constant on the Maxwellian surfaces. Since n lines and b 
lines lie on these surfaces, then, from (44), k = 0. Thus~ we conclude the 
following theorem. 

Theorem 3. For the complex lamellar motion of two-phase rotating 
magnetofluid flows where the magnetic field lines lie in the normal planes 
of the vortex lines, the vortex lines are straight lines. 

If the magnetic field lines and streamlines are along the binormals of 
the vortex lines, then from equations (32), (38), and (40) we have 

~B 
- --Izh2b Ob~ -- pUbtO~ (46) 

8s 

//Og/,/b'~ 2 Og Obs§ (47) 

and 

a: ,5 { Ub ~ K a "~Ubg~k'~] = ~ (  1- - '~ )U b (48) 

The second terms on the right-hand side of (47) and (48) are the components 
of the coriolis force along the vortex lines. Thus, we have Theorem 4. 

Theorem 4. For complex lamellar motion of two-phase magnetofluid 
flows in a rotating coordinate system where the streamlines and magnetic 
field lines are along the binormals of vortex lines, the total energy is constant 
along the vortex lines if and only if the component of the coriolis force 
along the vortex lines is given by ( H E / p ) O b s  . 

Let us assume that the deformation of the vortex tube along the magnetic 
field lines is zero; then we have the following results as a special case of 
Theorem 4. 

Corollary 1. The total energy is constant along the vortex lines if and 
only if the component of coriolis force along vertex lines is zero. 

If Ub/N is constant along the binormals of vortex lines, equation (48) 
gives 

a / N  = 1 (49) 

Thus, from (49) and (7), we conclude the proof  of the following Theorem 
5. 



Rotating Two-Phase Magnetofluid Flows 1433 

Theorem 5. For complex lamellar motion of two-phase, rotating, mag- 
neto fluid flows, if the ratio of fluid velocity and number density of dust 
particles is constant along binormals of the vortex lines, the magnitude of 
the fluid velocity is equal to the velocity of the dust. 

6. BELTRAMI MOTION 

The motion is Beltrami if and only if (Truesdell) 

u x c u r l u = 0 ,  i.e., u x ~ = 0  (50) 

The condition (50) implies u, = ub = 0. Let us assume that the magnetic 
field lines lie in the rectifying planes of the vortex lines; then hn = 0, and 
hence equations (35)-(37) are reduced to the form 

6 A . / 6 b + A n  div b = 0  (51) 

a . l ~ .  =0  (52) 

6 In An/6s + 0.~ = 0 (53) 

Now we consider equation (52) if the streamlines and magnetic field lines 
are not parallel, An # 0; hence 

f~. =0  (54) 

Theorem 6. For Beltrami motion of  two-phase, rotating magnetofluid 
flows where the magnetic field lines lie in the rectifying planes of the vortex 
lines, the family of Maxwellian surfaces is a normal congruence, the vortex 
lines are the geodesics, and their binormals are geodesic parallels. 

Suryanarayan has shown that Hu sin a*  is constant on the Maxwellian 
surfaces, where a* is the angle between the streamlines and magnetic field 
lines. Here ~* = 7r/2; hence, from equation (53), we have 

o.s =0  (55) 

Let us assume that the vorticity is constant along the vortex lines; then, 
using (55) in equation (1), we have 

0bs = 0 (56) 

This is the geodesic curvature of b lines, which vanishes. Vector fields 
satisfying the latter condition together with (54) are said to be flat. Hence 
the following theorem holds. 

Theorem 7. For Beltrami motion of two-phase, rotating magnetofluid 
flows, where the magnetic field lines lie in the rectifying planes of  the vortex 
lines and the magnitude of velocity remains uniform along the vortex lines, 
the family of Maxwellian surfaces is a normal congruence of developables. 
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I f  the magnet ic  field lines are along the binormals  o f  the vortex lines, 
we have, imposing the fiat field restriction (54) and (56) in equat ion (32), 

8B / Ss = - f l U f f s  + K N  ( a / N - 1)us (57) 

Also from equat ion (38), we have 

(~ 2u  us (58) 
N ' a s \ N ]  

I f  u ~ / N  is constant  along the tangent  o f  vortex lines, f rom equat ion (58), 
we have 

a / N  = 1 (59) 

From equations (59) and (7) we conclude the following theorem. 

Theorem 8. For Beltrami motion of  two-phase,  rotating magnetofluid 
flows, if the ratio of  the fluid velocity and number  density of  dust particles 
is constant  along the tangent  o f  the vortex lines, the magni tude  of  the fluid 
velocity is equal to the velocity of  the dust. 

Using equations (57) and (59), we get 

6 B /  6s = - r l ( a s  (60) 

We conclude the following theorem. 

Theorem 9. For Beltrami mot ion of  two-phase,  rotating magnetofluid 
flows where magnetic  field lines are along the binormals  o f  the vortex lines 
with flat field restrictions, the Bernoulli surfaces contain the vortex lines if 
and only if the magni tude  o f  fluid velocity is equal to the velocity o f  the dust. 
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